融合滑动注意力机制的钢带缺陷检测算法Steel Strip Defect Detection Algorithm Integrating Sliding Attention Mechanism
赵文晶
摘要(Abstract):
针对工业钢带表面缺陷检测存在的小目标识别率差、检测精度低等问题,提出一种融合滑动注意力机制的钢带缺陷检测算法。首先,构建融合滑动注意力主干网络,建模局部自注意力机制全局上下文;其次,提出基于内容重组的上采样算子,通过模型感受野的提升捕获目标周围特征信息;最后,通过可自适应学习的参数引导特征融合模块,抑制模型在训练过程中由于梯度反传而导致的不一致性。工业钢带数据集NEU-DET上的实验结果表明,所提检测算法能够在牺牲较少检测速度的情况下,提升均值平均精度至83.2%.
关键词(KeyWords): 缺陷检测;注意力机制;钢带;自适应空间特征融合
基金项目(Foundation): 国家自然科学基金(62006169);; 山西省自然科学基金面上项目(202103021224056);; 山西省回国留学人员科研资助项目(2021-046)
作者(Author): 赵文晶
参考文献(References):
- [1] 陶显,侯伟,徐德.基于深度学习的表面缺陷检测方法综述[J].自动化学报,2021,47(5):1017-1034.
- [2] 罗东亮,蔡雨萱,杨子豪,等.工业缺陷检测深度学习方法综述[J].中国科学:信息科学,2022,52(6):1002-1039.
- [3] GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision.Santiago,Chile,2015:1440-1448.
- [4] REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[J].Advances in neural information processing systems,2017,39:1137-1149.
- [5] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[J].2020,42:318-327.
- [6] LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision,Springer,Cham.2016:21-37.
- [7] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.Scaled-yolov4:Scaling cross stage partial network[C]//IEEE/cvf conference on computer vision and pattern recognition,2021:13024-13033.
- [8] 陈仁祥,詹赞,胡小林,等.基于多注意力Faster RCNN的噪声干扰下印刷电路板缺陷检测[J].仪器仪表学报,2021,42(12):167-174.
- [9] 向宽,李松松,栾明慧,等.基于改进 Faster RCNN 的铝材表面缺陷检测方法[J].仪器仪表学报,2021,42(1):191-198.
- [10] 陈建强,刘明宇,符秦沈,等.基于深度学习的热轧钢带表面缺陷检测方法[J].自动化与信息工程,2019,40(4):11-16,19.
- [11] CHEN S H,TSAI C C.SMD LED chips defect detection using a YOLOv3-dense model[J].Advanced engineering informatics,2021,47:101255.
- [12] HE G,ZHOU J,YANG H,et al.Research on Surface Defect Detection of Camera Module Lens Based on YOLOv5s-Small-Target[J].Electronics,2022,11(19):3189.
- [13] 查健,陈先中,王文财,等.基于改进的YOLOv5s刨花板表面小目标缺陷检测算法[J/OL].计算机工程与应用:1-11[2023-09-04].
- [14] 张林,谢刚,谢新林,等.融合MobileNetv3与Transformer的钢板缺陷实时检测算法[J].计算机集成制造系统,2023,29 (12):3951-3963.
- [15 ]WANG J,CHEN K,XU R,et al.Carafe:Content-aware reassembly of features[C]//Proceedings of the IEEE/CVF international conference on computer vision.Seoul,Korea.2019:3007-3016.
- [16] 向华桥,崔文超,刘世焯,等.基于高表征能力特征处理模块的小目标检测[J].计算机工程与设计,2021,42(5):1360-1367.
- [17] LIU S,HUANG D,WANG Y.Learning spatial fusion for single-shot object detection[J].arXiv preprint arXiv:1911.09516,2019.
- [18] BAO Y Q,SONG K C,LIU J,et al.Triplet-graph reasoning network for few-shot metal generic surface defect segmentation[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-11.
- [19] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver,BC,Canada.2023:7464-7475.