马尔科夫随机场MRF线性可变权重图像分割方法Markov Random FieldLiner Variable Weight Image Segmentation Method
李慧,张荣国,胡静,刘小君
摘要(Abstract):
在对图像进行分割时,传统MRF模型没有考虑到像素间的相互关系,这样会使得分割不够准确。为此,本文提出了一种MRF线性可变权重图像分割方法。它在标记场和特征场中加入了邻域像素间的强度信息,从而可以有效运用图像空间信息。然后将指数型可变权重参数改为线性可变权重参数,来连接标记场和特征场,加快了分割结果更新速度,增大了势函数的选择范围。实验显示,当用改进算法分割不同类型的图像时,本文提出的算法在分割结果的准确性和区域一致性上,更具有效性和鲁棒性。不管是在分割速度上还是图像处理效率上,都有了很大的提升。
关键词(KeyWords): 图像分割;MRF;权重参数;线性可变权重
基金项目(Foundation): 国家自然科学基金(51375132);; 山西省自然科学基金(201801D121134);; 晋城市科技局资助项目(201501004-5)
作者(Author): 李慧,张荣国,胡静,刘小君
参考文献(References):
- [1]YOU K Y,XIE L H.Survey of recent progress in networked control systems[J].Acta Automatica Sinica,2013,39(2):101-117.
- [2]GUPTA R A,CHOU M Y.Networked control system:Overview and research trends[J].IEEE Transactions on Industrial Electronics,2010,57(7):2527-2535.
- [3]张荣国.变形曲线曲面主动轮廓模型方法[M].国防工业出版社,2012.
- [4]张荣国,刘小君,刘焜,等.基于共轭梯度的B样条主动轮廓边缘提取[J].中国图象图形学报,2010,15(1):103-108.
- [5]YANG T C,PENG C,YUE D,et al.New study of controller design for networked control systems[J].Iet Control Theory&Applications,2010,4(7):1109-1121.
- [6]WANG F Y,LIU D.Networked control systems:Theory and Applications[J].Springer Ebooks,2008,6(1):1080-1084.
- [7]WANG Y L,LIU W T,ZHU X L,et al.A survey of networked control systems with delay and packet dropout[C]//Control and Decision Conference.IEEE,2011:2342-2346.
- [8]GAO H,MENG X,CHEN T.Stabilization of networked control systems with a new delay characterization[J].IEEE Transactions on Automatic Control,2008,53(9):2142-2148.
- [9]唐文静,邹海林,张彩明,等.基于边界的分层马尔科夫模型的医学图像分割[J].系统仿真学报,2014,26(8):1747-1751.
- [10]胡钦瑞,肖国强.基于粗糙集和MRF的彩色图像分割方法[J].西南师范大学学报:自然科学版,2014,39(4):110-116.
- [11]AHMADVAND A,DALIRI M R.Improving the runtime of MRF based method for MRI brain segmentation[J].Applied Mathematics&Computation,2015,256:808-818.
- [12]刘光辉,任庆昌,孟月波.基于局部自适应先验MRF模型的快速BP图像分割算法[J].计算机应用研究,2014,31(4):1232-1235.
- [13]YANG X,GAO X,TAO D,et al.An efficient MRF embedded level set method for image segmentation.[J].IEEE Transactions on Image Processing,2014,24(1):9-21.
- [14]KATO Z,PONG T C.A Markov random field image segmentation model for color textured images[J].Image&Vision Computing,2006,24(10):1103-1114.
- [15]GEMAN S,GEMAN D.Stochastic Relaxation,Gibbs Distributions,and the Bayesian Restoration of Images[J].Readings in Computer Vision,2009,20(5-6):25-62.
- [16]刘雪娜,侯宝明.变权重MRF算法在图像自动无监督分割中的应用[J].计算机与现代化,2012(11):78-80.
- [17]DENG H,CLAUSI D A.Unsupervised image segmentation using a simple MRF model with a new implementation scheme[J].Pattern Recognition,2004,37(12):2323-2335.
- [18]ZERUBIA J,CHELLAPPA R.Mean field annealing using compound Gauss-Markov random fields for edge detection and image estimation[J].IEEE Transactions on Neural Networks,1993,4(4):703-9.
- [19]YANG A Y,WRIGHT J,MA Y,et al.Unsupervised segmentation of natural images via lossy data compression[J].Computer Vision&Image Understanding,2008,110(2):212-225.
- [20]CHAIRA T,PANWAR A.An Atanassov's intuitionistic Fuzzy Kernel Clustering for Medical Image segmentation[J].International Journal of Computational Intelligence Systems,2014,7(2):360-370.
- [21]YANG X,GAO X,TAO D,et al.An efficient MRF embedded level set method for image segmentation.[J].IEEETransactions on Image Processing,2014,24(1):9-21.
- [22]KAZEMI K,NOORIZADEH N.Quantitative Comparison of SPM,FSL,and Brainsuite for Brain MR Image Segmentation.[J].Journal of Biomedical Physics&Engineering,2014,4(1):13-26.