改进的微粒群算法模拟动物的群体觅食行为Extending the Particle Swarm Optimization to Model Animal Foraging Behaviour
孟香,曾建潮
摘要(Abstract):
以改进的微粒群算法为工具,试图建立能更加准确反映实际动物觅食行为的模型,并对其进行仿真研究。从食物的分布、微粒对周围同伴的感知范围及微粒的综合感知能力等方面对原有的模型进行了改进。仿真结果表明改进了的模型能够更好地表现动物的群体觅食行为,并且更加真实自然地反应生态现象。
关键词(KeyWords): 微粒群算法;群体觅食;动物感知
基金项目(Foundation):
作者(Author): 孟香,曾建潮
参考文献(References):
- [1]KENNEDY J,EBERHARTR C.Particle Swarm Optimization[C]//Proc.IEEE Int.Conf.Neural Networks,USA:1995:1942-1948.
- [2]SHI Y,EBERHARTR C.Amodified particle swarm optimizer[C]//Proceedings of the IEEE International Conference on Evolu-tionary Computation,Piscataway,NJ:IEEE Press,1998:69-73.
- [3]XIE X,ZHANG W,YANG Z.Adaptive Particle Swarm Optimization on Individual Level[C]//International Conference on SignalProcessing(ICSP 2002),Beijing,2002:1215-1218.
- [4]PARSOPOULOS K E,VRAHTIS M N.Recent Approches to Global optimization Problems Through Particle Swarm Optimization[J].Natural Computing,2002,1(2-3):235-306.
- [5]RAY T,LIEW K M.Aswarm Metaphor for Multiovjective Design Optimization[J].Engineering Optimization,2002,34(2):141-153.
- [6]DI CHIO C,POLI R,DI CHIO P.Extending the Particle Swarm Algorithm to Model Animal Foraging Behaviour[R].America:University of Essex,2006.
- [7]DI CHIO C,POLI R,DI CHIO P.Modelling Group-Foraging Behaviour with Particle Swarms[R].Heidelberg:Springer Berlin,2006.
- [8]李建会,张江.数字创世纪-人工生命的新科学[M].北京:科学出版社,2006.