因子von Neumann代数上完全保持交换性的映射Maps Completely Preserving Commutativity on Factor von Neumann Algebras
赵红利,黄丽
摘要(Abstract):
令H,K是C上无限维Hilbert空间,A,B分别是H和K上的因子von Neumann代数,证明了如果Φ:A→B是双边完全保交换的满射,则Φ是线性同构或共轭线性同构的非零常数倍。
关键词(KeyWords): 因子von Neumann代数;完全保持;交换性
基金项目(Foundation): 国家自然科学基金青年基金项目(11501401)
作者(Author): 赵红利,黄丽
参考文献(References):
- [1] CUI J,HOU J. Linear mapson von Neumann algebras preserving zero products on tr-rank[J]. Bulletin of the Australian Mathematical Society,2002,65(1):79-91.
- [2] RADJABALIPOUR M. Additive mappings on von Neumann algebras preserving absolute values[J]. Linear Algebra and Its Applications,2003,368(2):229-241.
- [3] BREAR M,MIERS C R. Commutativity preserving mapping of von Neumann algebras[J]. Canadian Journal of Mathematics,1991,45(4):695-708.
- [4] CONNES A. On the spatial theory of von Neumann algebras[J]. Journal of Functional Analysis,1980,35(2):153-164.
- [5] LINNELL P A. Division rings and group von Neumann algebras[J]. Forum Mathematicum,1993,5(5):561-676.
- [6] CUI J,LI C K. Maps preserving product XY-YX*on factor von Neumann algebras[J]. Linear Algebra and Its Applications,2009,431(5):833-842.
- [7]焦美艳.Von Neumann代数套子代数上保因子交换性的线性映射[J].数学学报,2014,57(2):409-416.
- [8] CHOI M D,JAFARIAN A A,RADJAVI H. Linear maps preserving commutativity[J]. Linear Algebra and Its Applications,1987,87:227-241.
- [9]EMRL P. Commutativity preserving maps[J]. Linear Algebra and Ifs Applications,2008,429:1051-1070.
- [10] HOU J,HUANG L. Characterizing isomorphisms in terms of completely preserving invertibility or spectrum[J]. Journal of Mathematical Analysis and Applications,2009,359(1):81-87.
- [11]侯晋川,张秀玲.有限von Neumann代数上完全保迹秩的映射[J].太原理工大学学报,2012,43(3):269-275.
- [12] HUANG L,LIU Y. Maps completely preserving commutativity and maps completely preserving Jordan zero-product[J]. Linear Algebra and Its Applications,2014,462:233-249.
- [13]刘艳晓,路召飞,吴增良,等.标准算子代数上完全保立方零元的可加映射[J].太原科技大学学报,2016,37(2):159-162.