基于EMD-PF-GRNN的短期风电功率预测研究Research on Short-term Wind Power Forecasting Based on EMD-PF-GRNN
周婕,张春美,郭红戈
摘要(Abstract):
针对短期风电功率预测,将风电输出功率作为时间序列信号,由于其所具有波动性、非平稳性的特点,提出一种基于经验模态分解(EMD)、粒子滤波(PF)和广义回归神经网络(GRNN)的组合预测模型。首先,利用EMD对风电功率序列进行分解,获得各个相对平稳的模态分量;然后,将分解得到高离散度的数据采用PF进行分析处理,低离散度的数据采用GRNN进行分析处理,其中,通过粒子群算法(PSO),根据各低离散度数据自身特点优化GRNN的平滑因数,以进一步提高其预测性能和精度;最后,通过线性叠加各分量的预测结果得到最终风电功率的预测值。结果表明,与PSO-GRNN和单一GRNN结构相比,EMD-PF-GRNN预测模型的预测误差降低了6%左右,预测精度更高,可以更好的预测风电功率。
关键词(KeyWords): 经验模态分解;广义回归神经网络;粒子群算法;短期风电功率预测;粒子滤波
基金项目(Foundation): 国家自然科学青年基金(61603266);; 山西省自然科学基金(201801D121128)
作者(Author): 周婕,张春美,郭红戈
参考文献(References):
- [1] SHEN Y,WANG X,CHEN J.Wind Power Forecasting Using Multi-Objective Evolutionary Algorithms for Wavelet Neural Network-Optimized Prediction Intervals[J].Applied Sciences,2018,8(2):185.
- [2] 冉靖,张智刚,梁志峰,等.风电场风速和发电功率预测方法综述[J].数理统计与管理,2020,39(6):1045-1059.
- [3] CHEN N,QIAN Z,NABNEY I T,et al.Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction [J].IEEE TRANSACTIONS ON POWER SYSTEMS PWRS,2014,29(2):656-665.
- [4] YE L,ZHAO Y,ZENG C,et al.Short-Term Wind Power Prediction Based on Spatial Model[J].Renewable Energy,2017,101:1067-1074.
- [5] ZHAO J,GUO Y,XIAO X,et al.Multi-Step Wind Speed and Power Forecasts Based on a WRF Simulation and an Optimized Association Method [J].Applied Energy,2017,197:183-202.
- [6] CAO Y,LIU Y,ZHANG D,et al.Wind Power Ultra-Short-Term Forecasting Method Combined with Pattern-Matching and ARMA-Model[C]//2013 IEEE Grenoble Conference.Grenoble,France:IEEE,2013:1-4.
- [7] 刘帅,朱永利,张科,等.基于误差修正ARMA-GARCH模型的短期风电功率预测[J].太阳能学报,2020,41(10):268-275.
- [8] CHANG G W,LU H J,CHANG Y R,et al.An Improved Neural Network-Based Approach for Short-Term Wind Speed and Power Forecast [J].Renewable Energy,2017,105:301-311.
- [9] 叶瑞丽,郭志忠,刘瑞叶,等.基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J].电工技术学报,2017,32(21):103-111.
- [10] 王佶宣,邓斌,王江.基于经验模态分解与RBF神经网络的短期风功率预测[J].电力系统及其自动化学报,2020,32(11):109-115.
- [11] 孟鑫禹,王睿,张喜平,等.基于经验模态分解与多分支神经网络的超短期风功率预测[J].计算机应用,2021,41(1):237-242.
- [12] 梁智,孙国强,俞娜燕,等.基于高斯过程回归和粒子滤波的短期风速预测[J].太阳能学报,2020,41(3):45-51.
- [13] 喻华,卢继平,曾燕婷,等.基于不同优化准则和广义回归神经网络的风电功率非线性组合预测[J].高电压技术,2019,45(3):1002-1008.
- [14] 王慧莹,吴亮红,梅盼盼,等.果蝇优化广义神经网络的风电功率短期预测[J].电子测量与仪器学报,2019,33(6):177-183.
- [15] HUANG N E,SHEN Z,LONG S,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J].Proceedings of the Royal Society of London Series A,1998,454(1971):903-995.
- [16] WU Z,HUANG N E.A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method[J].Proceedings of the Royal Society of London,Series A,2004,460(2046):1597-1611.
- [17] 李孟敏.粒子滤波算法综述[J].中国新通信,2015,17(10):5-5.
- [18] DING W,FANG W.Target Tracking by Sequential Random Draft Particle Swarm Optimization Algorithm[C]//2018 IEEE International Smart Cities Conference(ISC2).Kansas City,MO,USA:IEEE,2018:1-7.
- [19] 何明慧,徐怡,王冉,等.改进的粒子群算法优化神经网络及应用[J].计算机工程与应用,2018,54(19):107-113,128.