一种改进ECO-HC的目标跟踪算法An Improved ECO-HC Target Tracking Algorithm
马聪杰,何秋生,孙宏,刘思超
摘要(Abstract):
针对目标发生快速移动导致跟踪精度不高甚至跟踪失败的情况,研究了一种改进ECO-HC的目标跟踪算法。首先,将不同的图像目标尺寸进行缩放以确定目标搜索区域,从而计算得到初始标度下的目标尺寸大小。其次,提取图像目标的HOG特征和CN特征并进行融合,将融合后的目标特征进行降维并加入样本空间模型。然后,提出一种扩充样本块的更新策略,对滤波响应函数进行优化,完成跟踪过程。最后,在OTB100标准数据集上进行实验验证,并与其他相关滤波类算法进行对比。实验结果表明:算法的跟踪精度为87.0%,跟踪成功率为65.3%,均优于其他算法。
关键词(KeyWords): 目标跟踪;特征融合;样本空间模型
基金项目(Foundation): 山西省研究生教育改革研究课题(2019JG175);; 山西省研究生教育创新项目(2020SY421)
作者(Author): 马聪杰,何秋生,孙宏,刘思超
参考文献(References):
- [1] 张可,杨灿坤,周春平,等.无人机视频图像运动目标检测算法综述[J].液晶与显示,2019,34(1):98-109.
- [2] 孟晓燕,段建民.基于相关滤波的目标跟踪算法研究综述[J].北京工业大学学报,2020,46(12):83-106.
- [3] HENRIQUES J F,CASEIROR,MARTINS P,et al.High-speed tracking with kernelized correlation filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596.
- [4] HENRIQUES J F,CASEIRO R,MARTINS P,et al.Exploiting the circulant structure of Tracking-by-Detection with Kernels[C]//Proceedings of the 2012 European Conference on Computer Vision.Berlin,Germany:Springer,2012:702-715.
- [5] DANELLJIAN M,KHAN F S,FELSBERG M,et al.Adaptive color attributes for real-time visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.USA:IEEE,2014:1090-1097.
- [6] LI Y,ZHU J.A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration[C]//Proceedings of the 2014 European Conference on Computer Vision,Zurich,Switzerland,September,2014:254-265.
- [7] DANELLJAN M,H GER G,KHAN F S,et al.Learning Spatially Regularized Correlation Filters for Visual Tracking[C]// Proceedings of the IEEE International Conference on Computer Vision.Washing-ton,USA:IEEE,2015:4310-4318.
- [8] DANELLJAN M,BHAT G,KHAN F S,et al.ECO:Efficient Convolution Operators for Tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Hawaii,USA:IEEE,2017:21-26.
- [9] LUKEZIC A,VOJIR T,CEHOVIN L,MATAS J,et al.Discriminative Correlation Filter Tracker with Channel and Spatial Reliability[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington,USA:IEEE,2017:4847-4856.
- [10] LIN T L .Regularized Background Adaptation:A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling[J].Image Processing,IEEE Transactions on,2011,20(3):822-836.
- [11] WU Y ,LIM J ,YANG M H .Object Tracking Benchmark[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,37(9):1834-1848.
- [12] DANELLJAN M,H GER G,KHAN F S,et al.Learning Spatially Regularized Correlation Filters for Visual Tracking[C]// Proceedings of the IEEE International Conference on Computer Vision.Washing-ton,USA:IEEE,2015:4310-4318.
- [13] CHAO M,YANG X,ZHANG C,et al.Long-term correlation tracking[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Hawaii,USA:IEEE,2015:863-874.
- [14] BERTINETTO L,VALMADRE J,GULODETZ S,et al.Staple:Complementary Learners for Real-time Tracking[C]// Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition.Washing-ton,USA:IEEE,2016:1401-1409.
- [15] WANG M,LIU Y,HUANG Z.Large Margin Object Tracking with Circulant Feature Maps[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Hawaii,USA:IEEE,2017:2437-2446.
- [16] DANELLJAN M,HAGER,GUSTAV,et al.Adaptive Decontamination of the Training Set:A Unified Formulation for Discriminative Visual Tracking[J].2016,25(2):423-436.