基于非支配排序的多目标拟态物理学优化算法An Multi-objective Artificial Physics Optimization Algorithm Based on Non-dominated Sorting Thought
蔡巧珍,谭瑛,王艳
摘要(Abstract):
将非支配排序思想引入到多目标拟态物理学优化(Multi-objective artificial physics optimization,MOAPO)算法中,将拥挤距离体现到MOAPO算法的质量函数中,提出了一种新的MOAPO算法。采用六个经典的多目标优化问题的测试函数对本算法进行性能测试,并与MOPSO算法、NSGA2算法及既存的MOAPO算法进行比较分析,实验结果表明,该算法具有更好的分布性。
关键词(KeyWords): 拟态物理学优化;多目标优化;非支配排序;拥挤距离;分布性
基金项目(Foundation): 太原科技大学博士启动项目(20122030)
作者(Author): 蔡巧珍,谭瑛,王艳
参考文献(References):
- [1]DEB K,PRATAP A,AGRAWAL S,et al.A Fast and Elitist Multi-Objective Genetic Algorithm:NSGA2II[R].KanGAL ReportNo.200001.India,2000.
- [2]ZITZLER E,LAUMANNS M,THIELE L.SPEA2:Improving the strength Pareto evolutionary algorithm[C]//Giannakoglou K,Tsa-halis DT,Périaux J,Papailiou KD,Fogarty.Evolutionary Methods for Design,Optimization and Control with Applications to Indus-trial Problems.Berlin:Springer-Verlag,2002.95-100.
- [3]COELLO COELLO CA,PULIDO GT,LECHUGA MS.Handling multiple objectives with particle swarm optimization[J].IEEETrans on Evolutionary Computations,2004,8(3):256-279.
- [4]Xie L P,Zeng J C.A Global Optimization Based on Physicomimetics Framework[C]//The 2009 World Summit on Genetic andEvolutionary Computation,Shanghai,2009,609-616.
- [5]Xie Liping,Zeng Jianchao,Cui Zhihua.Using Artificial Physics to Solve Global Optimization Problems[C]//the 8th IEEE Interna-tional Conference on Cognitive Informatics(ICCI 2009),Hong Kong,2009,502-508.
- [6]Xie L P,Zeng J C,Cui Z H.On mass effects to artificial physics optimization algorithm for global optimization problems[J].Inter-national Journal of Innovative Computing and Applications(IJICA),2010,2(2):69-76.
- [7]谢丽萍.基于拟态物理学优化的全局优化算法设计及性能分析[D].兰州:兰州理工大学,2010.
- [8]伊健.基于可行性规则的拟态物理学约束优化算法研究[D].太原:太原科技大学,2011.
- [9]王艳.多目标拟态物理学优化算法及其应用研究[D].兰州:兰州理工大学,2011.
- [10]王艳,曾建潮.一种基于拟态物理学优化的多目标优化算法[J].控制与决策,2010,25(7):1040-1044.
- [11]PARSOPOULOS K E,VRAHATIS M N.Particle swarm optimization method in multi-objective problems[C]//SAC 2002,Ma-drid,2002:603-607.
- [12]ZITZLER E,DEB K,and THIELE L.Comparison of Multi-objective Evolutionary Algorithms:Empirical Results[J].EvolutionaryComputation,2000,8(2):173-195.
- [13]张利彪,周春光,马铭,等.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291.